Small-x collective effects in eA scattering

Vadim Guzey

Petersburg Nuclear Physics Institute (PNPI), National Research Center "Kurchatov Institute", Gatchina, Russia

Outline:

- Basics of nuclear shadowing
- Leading twist nuclear shadowing
- Gluon shadowing from charmonium photoproduction at the LHC
- Conclusions

7th International Conference on Physics Opportunities at an EIC (POETIC 7) Temple University, Philadelphia, Nov 14-18, 2016

Nuclear shadowing: data and global fits

Nuclear shadowing = high-energy (small x) collective/coherent nuclear effect:

 $F_{2A}(x,Q^2) < A F_{2N}(x,Q^2) \rightarrow g_A(x,Q^2) < A g_N(x,Q^2)$

- Nuclear PDFs, especially $g_A(x,\mu^2)$, are known with large uncertainties.
- Small-x, small-Q² fixed-target data may contain large HT effects, Qiu, Vitev, 2004
- pA@LHC data help mostly in antishadowing region, Armesto et al, arXiv:1512.01528; Eskola et al, JHEP 1310 (2013) 213
- Future options: Electron-Ion Collider in the US, Accardi et al, ArXiv:1212.1701; LHeC@CERN, LHEC Study Group, J. Phys. G39 (2012) 075001
- Option right now: Charmonium photoproduction in Pb-Pb UPCs@LHC

Nuclear shadowing: Gribov-Glauber model

 At high-energies, probe interacts coherently (collectively) with all nucleons of the nucleus target.

• Shadowing is a result of destructive interference of amplitudes for the interaction with 1, 2, 3, etc. nucleons of the target.

Figure 2: Graphs for pion-deuteron scattering.

- Intermediate states are elastic (Glauber) and elastic+inelastic (Gribov), Glauber 1955,
 Gribov, 1969 → nuclear shadowing is driven by elementary diffraction
- For nucleon beams, elastic dominates → Glauber model for total, elastic, inelastic pA and nA cross sections with % accuracy.
- For γ (γ *), diffraction into large masses is 40% (~100%) of diffr. dissociation cross section \rightarrow shadowing driven by multiple rescatterings of effective cross section:

$$\sigma_{\text{eff}} = \frac{16\pi}{\sigma_{\gamma^* N}} \int dM_X^2 \frac{d\sigma_{\gamma^* N}^{\text{diff}}(t=0)}{dM_X^2 dt}$$

• Good description of total γ A and γ *A cross sections, Frankfurt, Strikman 1999; Adeluyi, Fai 2006; Capella et al (1997); Armesto et al (2003); Tywoniuk et al (2006)

Leading twist nuclear shadowing model

• For γ^* , one can combine Gribov-Glauber model with QCD factorization theorems for inclusive and diffractive DIS → shadowing for individual partons j, Frankfurt, Strikman (1999)

Interaction with 2 nucleons:

Interaction with 2 nucleons:
$$\sigma_2^j(x) = \frac{16\pi}{xf_{j/N}(x,\mu^2)} \int_x^{0.1} dx_P \beta f_{j/N}^{D(4)}(x,\mu^2,x_P,t=0)$$
 model-indep via diffractive PDFs:

 Interaction with ≥ 3 nucleons: via soft hadronic fluctuations of γ^*

$$\sigma_{\rm soft}(x) = \frac{\int d\sigma P_{\gamma}(\sigma)\sigma^3}{\int d\sigma P_{\gamma}(\sigma)\sigma^2} \qquad \begin{array}{c} \text{P(σ) probability to} \\ \text{interact with cs σ} \end{array}$$

• In quasi-eikonal approximation in low-x limit, Frankfurt, Guzey, Strikman 2012:

$$xf_{j/A}(x,\mu^2) = Af_{j/N}(x,\mu^2) - \frac{2\sigma_2^j f_{j/N}(x,\mu^2)}{[\sigma_{\text{soft}}^j(x)]^2} \int d^2b \left(e^{-\frac{1}{2}\sigma_{\text{soft}}^j(x)T_A(b)} - 1 + \frac{\sigma_{\text{soft}}^j(x)}{2}T_A(b) \right)$$

Leading twist nuclear shadowing model (2)

• Model gives input NLO nuclear PDFs at μ^2 =4 GeV² for subsequent DGLAP evolution.

- Antishadowing for gluons only, "by hand" requiring momentum sum rule conservation.
- Name "*leading twist*" because diffractive structure functions/PDFs measured at HERA scale with Q², i.e., LT quantity.
- Main theoretical uncertainty from σ_{soft}
- Absent in case of deuteron → can be used to test the LT shadowing approach.

Leading twist nuclear shadowing model (3)

Results of NLO DGLAP evolution using LT nuclear shadowing input:

Leading twist nuclear shadowing model (4)

• Gluon diffractive PDFs are large, ZEUS, H1 2006 \rightarrow large shadowing for $g_A(x,\mu^2)$, Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255

For quarks, the agreement between LTA and EPS09 is much better.

LT shadowing: Impact parameter dependence

- Shadowing arises from rescattering on target nucleons at given impact parameter b.
- Removing integral over b → impact parameter dependent nuclear PDFs:

$$xf_{j/A}(x,b,\mu^2) = T_A(b)xf_{j/N}(x) - \frac{2\sigma_2^j f_{j/N}(x,\mu^2)}{[\sigma_{\text{soft}}^j(x)]^2} \left(e^{-\frac{1}{2}\sigma_{\text{soft}}^j(x)T_A(b)} - 1 + \frac{\sigma_{\text{soft}}^j(x)}{2}T_A(b) \right)$$

- Can be only indirectly determined using global QCD fits, EPS09s nPDFs, Helenius et al (2012)
- Can be probed and tested in:
 - centrality dependence of hard pA/AA processes, Helenius et al (2012)
 - t dependence of exclusive γ^*A and γA processes, e.g., $\gamma^*A \to \gamma A$, Frankfurt, VG, Strikman 2012, $\gamma A \to J/\psi A$, VG, Strikman, Zhalov, work in progress

Nuclear diffractive parton distributions

• Leading twist nuclear shadowing model can be applied to inclusive diffraction in γ^*A :

Predicted large probability of hard diffraction on nuclei and nuclear diffractive PDFs:

• Can be measured in inclusive γ^*A diffraction at LHeC/EIC and hard diffraction in γA , e.g., diffractive photoproduction of dijets in UPCs@LHC, Guzey, Klasen 2016

Leading twist vs. all-twist shadowing

- In our leading twist shadowing model, we take $\mu^2=4$ GeV² to minimize (i) HT effects in diffractive PDFs, H1, ZEUS, 2006, (ii) cross section fluctuation in γ^*
- We underestimate shadowing at fixed-target energies

Comparison of theoretical predictions: Leading twist model (LTA) and LT+HT (ρ , ω , and ϕ vector mesons) to NMC 1995 fixed-target data.

→ HT effects may contaminate global QCD fits of nuclear PDFs.

Leading twist vs. higher-twist shadowing

Principal difference between our LTA and all-twist approaches, e.g. dipole model:

Frankfurt, Guzey, McDermott, Strikman 2002

Triple-Pomeron coupling to 2 nucleons

- The difference should manifest itself in observables dominated by smallsize dipoles:
- nuclear longitudinal structure function F_L^A(x,Q²) at LHeC/EIC
- nuclear suppression of J/ψ photoproduction on nuclei in UPCs@LHC

Separate Pomeron couplings to 2 nucleons

→ higher twist (HT) for small dipoles

Exclusive charmonium photoproduction

• To leading order in α_S and in non-relativistic approximation for charmonium $(J/\psi, \psi(2S))$ distribution amplitude:

$$\frac{d\sigma_{\gamma T \to J/\psi T}(W, t = 0)}{dt} = \frac{16\pi^{3}\Gamma_{ee}}{3\alpha_{\text{e.m.}}M_{V}^{5}} \left[\alpha_{S}(\mu^{2})H^{g}(\xi, \xi, t = 0, \mu^{2})\right]^{2}$$

At LO and small ξ, GPDs are expressed in terms of PDFs:

$$H^g(\xi, \xi, t = 0, \mu^2) = R_g x g(x_B, \mu^2)$$

$$H^{g}(\xi, \xi, t = 0, \mu^{2}) = R_{g} x g(x_{B}, \mu^{2})$$
 $R_{g} = \frac{2^{2\lambda+3}}{\sqrt{\pi}} \frac{\Gamma(\lambda + 5/2)}{\Gamma(4 + \lambda)} \approx 1.2$, for $xg \sim 1/x^{\lambda}$ with $\lambda \approx 0.2$

Application to nuclear targets:

$$\sigma_{\gamma A \to J/\psi A}(W_{\gamma p}) = \frac{(1+\eta_A^2)R_{g,A}^2}{(1+\eta^2)R_g^2} \frac{d\sigma_{\gamma p \to J/\psi p}(W_{\gamma p}, t=0)}{dt} \left[\frac{G_A(x, \mu^2)}{AG_N(x, \mu^2)} \right]^2 \Phi_A(t_{\min})$$

Small correction $k_{A/N} \approx 0.95$

From HERA and LHCb

Gluon shadow. Rq

From nuclear form factor

M. Ryskin (1993)

$$\Phi_A(t_{\min}) = \int_{-\infty}^{t_{\min}} dt |F_A(t)|^2$$

Comparison to ALICE and CMS UPC data

Nuclear suppression factor S:

$$S(W_{\gamma p}) = \left[\frac{\sigma_{\gamma Pb \to J/\psi Pb}}{\sigma_{\gamma Pb \to J/\psi Pb}^{\text{IA}}}\right]^{1/2} = \kappa_{A/N} \frac{G_A(x, \mu^2)}{AG_N(x, \mu^2)} = \kappa_{A/N} R_g$$

Abelev et al. [ALICE], PLB718 (2013) 1273; Abbas et al. [ALICE], EPJ C 73 (2013) 2617

[CMS], arXiv:1605.06966 [nucl-ex]

- Good agreement with ALICE data on coherent J/ ψ photoproduction in Pb-Pb UPCs@2.76 TeV \rightarrow first direct evidence of large gluon nuclear shadowing at x=0.001.
- Similarly good description using EPS09+CTEQ6L.
- Cannot be described by simple versions of the dipole model, Lappi, Mantysaari 2013

Transverse imaging of nuclear gluon distributions

• Nuclear shadowing does not only suppress the $\gamma A \rightarrow J/\psi A$ cross section, but also modifies its t dependence.

$$\frac{d\sigma_{\gamma A \to J/\psi A}}{dt} = \frac{d\sigma_{\gamma p \to J/\psi p}(t=0)}{dt} \left(\frac{R_{g,A}}{R_{g,p}}\right)^2 \left(\frac{g_A(x,t,\mu^2)}{Ag_p(x,\mu^2)}\right)^2$$

 Nuclear GPD in ξ=0 limit → impact parameter dependent nuclear PDF

$$g_A(x,t,\mu^2) = \int d^2\vec{b} \, e^{i\vec{q}_\perp \vec{b}} g_A(x,b,\mu^2)$$

Guzey, Strikman, Zhalov, work in progress

• Shift of t-dependence is caused by broadening in transverse plane of nuclear gluon distribution due to nuclear shadowing $\rightarrow \Delta R_A/R_A \approx 1.05-1.11$.

Conclusions

- Nuclear PDFs at small x are poorly constrained, especially in gluon channel.
- Leading twist nuclear shadowing model is a dynamical approach to nuclear PDFs and nuclear diffractive PDFs at small x, whose phenomenology requires only a few weakly-constrained parameters.
- The approach makes definite predictions for x, Q2 and b dependence of nPDFs in the collider kinematics of LHC, LHeC and EIC, where results of global QCD fits are an extrapolation.
- Predicted large nuclear gluon shadowing is confirmed by ALICE and CMS measurements of coherent J/ ψ photoproduction on Pb in UPCs@LHC.